L’Acido Alfa Lipoico (o Acido Tioctico)

L’ ALA è un coenzima presente in natura e prodotto in minima parte dall’organismo, balzato al centro di discussioni negli ultimi anni per via delle sue interessanti proprietà. Innanzitutto, ci sono da fare alcune differenziazioni, esistono 2 tipi di ALA:

l’enantiomero S(-) e l’enantiomero R(+). In commercio, esiste il cosiddetto ALA racemato, il quale contiene una mistura al 50% dei due isomeri i quali, come vedremo in seguito, hanno effetti diversi.

In natura e nell’organismo esiste solo il R(+), mentre il S(-) è una forma sintetica derivante come sottoprodotto della produzione dell’ ALA a livello industriale.

Il metabolismo del glucosio

Per funzionare correttamente, le cellule hanno bisogno di un continuo apporto di carburante. Lo zucchero nel sangue, è la chiave per la maggior parte delle cellule nel corpo e l’insulina è l’ormone che si occupa dello spostamento del glucosio sanguigno verso le cellule (anche quelle muscolari). L’insulina entra in contatto con il suo recettore, situato sulla superficie della cellula, e grazie a questo legame vengono mobilitati dei recettori (Glut 4) che aprono la strada al glucosio.

Alcuni fattori, come la sedentarietà, la dieta eccessivamente ricca di carboidrati ad alto indice glicemico, il non sottoporsi mai a regimi ipocalorici e l’invecchiamento in generale, possono compromettere l’efficacia di questo sistema, così accade che la risposta all’insulina diventa meno repentina. Questo, in forma grave, sfocia nella sindrome X (o diabete di tipo 2) e le relative conseguenze: adiposità, colesterolo elevato, pressione alta, varie patologie cardiovascolari, ecc…

Cosa c’entra l’ ALA in tutto questo?

Bene, trials controllati provano che la forma racemica dell’ ALA (o RS-ALA per comodità) aiuta l’organismo a diventare più sensibile all’azione dell’insulina.

Alcune ricerche, però, dimostrano ampiamente che solo il R(+) è responsabile dell’azione di insulino-mimetico, mentre il S(-) non fa assolutamente nulla o addirittura il contrario!!! Adesso resta da spiegare, mediante quale meccanismo il R(+) esplica la sua azione. Gli scienziati hanno comparato l’effetto dei 2 enantiomeri sugli animali da laboratorio (iniettando singolarmente la forma S(-) o R(+)) e hanno scoperto che nei muscoli di tali animali (trattati con la forma R(+) era presente il 31% di glucosio in più in risposta all’insulina, mentre il S(-) non ha dato alcun beneficio.

In seguito, furono esaminati gli effetti cronici dei due enantiomeri:

un gruppo di animali fu sottoposto ad una dieta regolare, l’altro ricevette in più uno dei due enantiomeri.

Stessi risultati!!!

In più, I livelli di insulina degli animali trattai con R(+) risultarono soppressi del 17% (insieme agli acidi grassi liberi), ciò significa che meno insulina è necessaria per mantenere costante la glicemia nel sangue. Invece, il S(-) ha causato un aumento della secrezione di insulina del 15% (nessun cambiamento nei FFA), a dimostrazione del fatto che ha un comportamento opposto a quello del R(+). La quantità dei recettori Glut-4 nelle cellule muscolari degli animali era ridotta del 19% in seguito a utilizzo di S(-).

Il R(+), contrariamente alle aspettative e a quanto solitamente si afferma, non ha mostrato nessuna abilità nell’aumentare il numero dei suddetti recettori, ma è stato visto che il R(+) aiuta la cellula a mobilizzare i trasportatori del glucosio, cosa invece su cui il S(-) interferisce!

Altri aspetti della risposta all’insulina furono migliorati dall’ R(+) ma non dall’ S(-), e cioè una ristorazione del 33% nell’abilità di bruciare glicogeno per energia e un aumento del 26% nella formazione di glicogeno.

L’ attività antiossidante

Quando ingoi una compressa di RS-ALA, entrambi gli isomeri finiscono nel flusso sanguigno e poi trasportati nelle cellule. Qui, scorgiamo un altro vantaggio del R(+): è più biodisponibile rispetto al S(-). Le concentrazione plasmatiche di picco dei due isomeri, a parità di dose, sono del doppio a favore del R(+) e il quantitativo totale di R(+) trasportato nel plasma è del 60-85% più grande della forma S(-). Per chiarire le differenze di assorbimento, gli scienziati hanno somministrato agli animali, in via parenterale, la forma R(+), S(-) e RS, in modo da bypassare il tratto gastrointestinale. Come ci si aspettava, le concentrazioni erano uguali in tutti e tre i gruppi, ma tre ore dopo, il gruppo che ha ricevuto R(+) aveva da 2 a 7 volte più R-ALA nelle lenti degli occhi, e tre volte di più degli animali che avevano ricevuto RS-ALA.

Nonostante ciò che leggiamo e sentiamo, il vero super-antiossidante, non è il R(+) o S(-) o RS, è un sottoprodotto dell’ ALA chiamato DHLA (Acido diidrolipoico).

In un altro studio, le cellule dei nervi prelevate da differenti parti del cervello, furono esposte ad una sufficiente quantità di buthionine sulfoxamine (BSO) per distruggere metà di essi. Aggiungere R(+) ha comportato un salvataggio tra ½ e 1/3 delle cellule nervose.

Ne la forma S(-) ne la RS hanno mostrato un effetto simile.

Risultati ancora più inaspettati furono visti quando lo stesso team di ricerca decise di cercare una dose di RS-ALA sufficiente (o di uno dei 2 enantiomeri) per proteggere le cellule nervose dall’acido omocisteico. Senza sorpresa, gli scienziati hanno trovato che il R(+) ha protetto le cellule in questione con una dose del 38% inferiore richiesta dal S(-). Addirittura, la forma RS in questo caso si è dimostrata ancora più debole della forma S(-). Le tre forme, erano però efficaci nella stessa maniera nel proteggere le cellule nervose nella zona dell’ippocampo. Ancora uno studio, ha sperimentato le proprietà antiossidanti dell’ALA nei confronti della cataratta indotta negli animali con BSO.

Grazie ancora al R(+), il numero degli animali che ha contratto cataratta è stato del 55% in meno e la forma RS ha offerto lo stesso grado di protezione.

I metalli

Come abbiamo visto prima, l’ ALA offre una gran varietà di protezioni contro numerosi agenti tossici e in vari distretti dell’organismo (cuore, fegato, polmoni, cervello, sangue). L’ALA offre protezione anche dai cosiddetti “metalli di transizione” come ferro, cadmio e rame. Questi tre metalli non sono ossidanti di per se, ma posti a contatto con il perossido di idrogeno, spaccano la molecola a metà formando 2 radicali idrossilici tossici. L’ALA previene proprio questa reazione (chiamata reazione di Fenton).

Un eccesso di questi metalli nel cervello, è causa di molti disordini neuronali, tra cui anche morbo di Parkinson e di Alzaimer.

Ancora al riguardo del SNC, l’ ALA è in grado di proteggere dagli effetti neurotossici della MDMA (anfetamine).

ALA prevents 3,4-methylenedioxy-methamphetamine (MDMA)-induced neurotoxicity.

Aguirre N, Barrionuevo M, Ramirez MJ, Del Rio J, Lasheras B.

Department of Pharmacology, School of Medicine, University of Navarra, Pamplona, Spain.

A single administration of 3,4-methylenedioxymethamphetamine (MDMA, 20 mg/kg, i.p.), induced significant hyperthermia in rats and reduced 5-hydroxytryptamine (5-HT) content and [3H]paroxetine-labeled 5-HT transporter density in the frontal cortex, striatum and hippocampus by 40-60% 1 week later. MDMA treatment also increased glial fibrillary acidic protein (GFAP) immunoreactivity in the hippocampus. Repeated administration of the metabolic antioxidant alpha-lipoic acid (100 mg/kg, i.p., b.i.d. for 2 consecutive days) 30 min prior to MDMA did not prevent the acute hyperthermia induced by the drug; however, it fully prevented the serotonergic deficits and the changes in the glial response induced by MDMA. These results further support the hypothesis that free radical formation is responsible for MDMA-induced neurotoxicity.

Lo stomaco

Uno studio interessante condotto sui ratti, ha dimostrato la capacità protettiva dell’ ALA dei confronti delle lesioni gastriche etanolo-indotte.

Thioctic acid protection against ethanol and indomethacin induced gastric mucosal lesions in rats.

Gutierrez-Cabano CA, Valenti JL.

Department of Surgical Pathology II, Faculty of Medical Sciences National University of Rosario, Argentina.

BACKGROUND/AIMS: The gastric protective effect of thioctic acid, a sulfhydryl compound, against chemically induced mucosal lesions has not been reported. METHODS: Fasted Wistar rats (24 h) were treated (gavage administration) with graded doses of thiotic acid (12.5, 25, 37.5, 50 mg/kg) followed 0.5 h later by the gavage administration of 1 ml 96% ethanol or intraperitoneal administered indomethacin. The gastric mucosa was examined grossly and histologically for an evaluation of the lesions. RESULTS: Pretreatment of rats with thiotic acid has shown a significant decline in the mean number, size, incidence and severity of mucosal lesions induced by both ethanol and indomethacin. CONCLUSIONS: This is the first evidence that thiotic acid protects the rat gastric mucosa against chemically induced damage. Its is speculated that this finding may prove to be important in the development of improved therapies for the prevention and treatment of gastric ulcers in humans.

Uso dell’ ALA

Bene, una volta che vi siete decisi su quale tipo di ALA orientarvi (se R(+) o RS), sarebbe il caso di imparare ad usarlo. Personalmente uso solo R(+) perché la forma RS mi da inappetenza e alcune crisi asteniche. Ma al di la di questo, sarei uno stupido se mettessi in discussione tutte le ricerche riportate qui. Una dose da epatoprotettore, consiste in almeno 500-1000mg al giorno, mentre come insulino-mimetico, si arriva anche fino a 3gr al giorno. Io uso 1500-2000mg al giorno di R(+). Chi lo usa solitamente riporta effetti visivi particolari alla muscolatura, in particolare aumento della densità e riduzione dell’adiposità. La dose va presa ad ogni pasto contenente carboidrati. Si può, volendo, combinare con il cromo per migliorarne l’effetto insulino mimetico. Io abbino 600mcg di cromo picolinato al giorno.

Bibliografia

1 Haramaki N, Stewart DB, Aggarwal S, Ikeda H, Reznick AZ, Packer L. Networking antioxidants in the isolated rat heart are selectively depleted by ischemia-reperfusion. Free Radic Biol Med. 1998 Aug;25(3):329-39.

2 Chaudiere J, Ferrari-Iliou R. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol. 1999 Sep-Oct;37(9-10):949-62.

3 Packer L, Weber SU, Rimbach G. Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling. J Nutr. 2001 Feb;131(2):369S-73S.

4 Packer L, Tritschler HJ. Antioxidant properties and clinical applications of alpha-lipoic acid and dihidrolipoic acid. In Cadenas E, Packer L. Handbook of Antioxidants. New York: Marcel Dekker, 1996: 545-91.

5 Jacob S, Ruus P, Hermann R, Tritschler HJ, Maerker E, Renn W, Augustin HJ, Dietze GJ, Rett K. Oral administration of rac-alpha-lipoic acid modulates insulin sensitivity in patients with type-2 diabetes mellitus: a placebo-controlled pilot trial. Free Radic Biol Med. 1999 Aug;27(3-4):309-14.

6 Ziegler D, Reljanovic M, Mehnert H, Gries FA. Alpha-lipoic acid in the treatment of diabetic polyneuropathy in Germany: current evidence from clinical trials. Exp Clin Endocrinol Diabetes. 1999;107(7):421-30.

7 Morcos M, Borcea V, Isermann B, Gehrke S, Ehret T, Henkels M, Schiekofer S, Hofmann M, Amiral J, Tritschler H, Ziegler R, Wahl P, Nawroth PP. Effect of alpha-lipoic acid on the progression of endothelial cell damage and albuminuria in patients with diabetes mellitus: an exploratory study. Diabetes Res Clin Pract. 2001 Jun;52(3):175-83.

8 Valenzuela A, Morgado N. Trans fatty acid isomers in human health and in the food industry. Biol Res. 1999;32(4):273-87.

9 Hu FB, Stampfer MJ, Manson JE, Rimm E, Colditz GA, Rosner BA, Hennekens CH, Willett WC.
Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med. 1997 Nov 20;337(21):1491-9.

10 Salmeron J, Hu FB, Manson JE, Stampfer MJ, Colditz GA, Rimm EB, Willett WC. Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr. 2001 Jun;73(6):1019-26.

11 Zimmer G, Mainka L, Ulrich H. ATP synthesis and ATPase activities in heart mitoplasts under influence of R(+)- and S(-)-enantiomers of lipoic acid. Methods Enzymol. 1995;251:332-40.

12 Rao G. Insulin resistance syndrome. Am Fam Physician. 2001 Mar 15;63(6):1159-63, 1165-6.

13 Kwiterovich PO Jr. The metabolic pathways of high-density lipoprotein, low-density lipoprotein, and
triglycerides: a current review. Am J Cardiol. 2000 Dec 21;86(12A):5L-10L.

14 Egan BM, Greene EL, Goodfriend TL. Nonesterified fatty acids in blood pressure control and cardiovascular complications. Curr Hypertens Rep. 2001 Apr;3(2):107-16.

15 Yip J, Facchini FS, Reaven GM. Resistance to insulin-mediated glucose disposal as a predictor of cardiovascular disease. J Clin Endocrinol Metab. 1998 Aug;83(8):2773-6.

16 Jouven X, Charles MA, Desnos M, Ducimetiere P. Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation. 2001 Aug 14;104(7):756-61.

17 Konrad T, Vicini P, Kusterer K, Hoflich A, Assadkhani A, Bohles HJ, Sewell A, Tritschler HJ, Cobelli C, Usadel KH. alpha-Lipoic acid treatment decreases serum lactate and pyruvate concentrations and improves glucose effectiveness in lean and obese patients with type 2 diabetes. Diabetes Care. 1999 Feb;22(2):280-7.

18 Jacob S, Henriksen EJ, Schiemann AL, Simon I, Clancy DE, Tritschler HJ, Jung WI, Augustin HJ, Dietze GJ. Enhancement of glucose disposal in patients with type 2 diabetes by alpha-lipoicacid. Arzneimittelforschung. 1995 Aug;45(8):872-4.

19 Estrada DE, Ewart HS, Tsakiridis T, Volchuk A, Ramlal T, Tritschler H, Klip A. Stimulation of glucose uptake by the natural coenzyme alpha-lipoic acid/thioctic acid: participation of elements of the insulin signaling pathway. Diabetes. 1996 Dec;45(12):1798-804.

20 Yaworsky K, Somwar R, Ramlal T, Tritschler HJ, Klip A. Engagement of the insulin-sensitive pathway in the stimulation of glucose transport by alpha-lipoic acid in 3T3-L1 adipocytes. Diabetologia. 2000 Mar;43(3):294-303.

21 Streeper RS, Henriksen EJ, Jacob S, Hokama JY, Fogt DL, Tritschler HJ. Differential effects of lipoic acid stereoisomers on glucose metabolism in insulin-resistant skeletal muscle. Am J Physiol. 1997 Jul;273(1 Pt 1):E185-91.

22 Konrad D, Somwar R, Sweeney G, Yaworsky K, Hayashi M, Ramlal T, Klip A. The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: potential role of p38 mitogen-activated protein kinase in GLUT4 activation. Diabetes. 2001 Jun;50(6):1464-71.

23 Loeblein K, Rett K, Maerker E, Tritschler HJ, Wessel K, Wicklmayr M, Haring HU. Thioctic acid stimulates translocation of glucose transports in hearts of insulin-resistant Zucker rats. Diabetologia. 1995 Aug; 38(1):A132(Abs512).

24 Hermann R, Niebch G. Human pharmacokinetics of ?-lipoic acid. In Fuchs J, Packer L, Zimmer G (eds), Lipoic Acid in Health and Disease. 1997; New York: Marcel Dekker Inc, 337-60.

25 Podda M, Tritschler HJ, Ulrich H, Packer L. Alpha-lipoic acid supplementation prevents symptoms of vitamin E deficiency. Biochem Biophys Res Commun. 1994 Oct 14;204(1):98-104.

26 Breithaupt-Grogler K, Niebch G, Schneider E, Erb K, Hermann R, Blume HH, Schug BS, Belz GG. Dose-proportionality of oral thioctic acid–coincidence of assessments via pooled plasma and individual data. Eur J Pharm Sci. 1999 Apr;8(1):57-65.

27 Hermann R, Niebch G. “Human pharmacokinetics of a-lipoic acid.” In Fuchs J, Packer L, Zimmer G (eds), Lipoic Acid in Health and Disease. 1997; New York: Marcel Dekker Inc, 337-60.

28 Gleiter CH, Schug BS, Hermann R, Elze M, Blume HH, Gundert-Remy U. Influence of food intake on the bioavailability of thioctic acid enantiomers. Eur J Clin Pharmacol. 1996;50(6):513-4.

29 Maitra I, Serbinova E, Tritschler HJ, Packer L. Stereospecific effects of R(+)-Lipoic Acid on buthionine sulfoximine-induced cataract formation in newborn rats. Biochem Biophys Res Commun. 1996 Apr 16;221(2):422-9.

30 Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid. Gen Pharmacol. 1997 Sep;29(3):315-31..

31 Morikawa T, Yasuno R, Wada H. Do mammalian cells synthesize lipoic acid? Identification of a mouse cDNA encoding a lipoic acid synthase located in mitochondria. FEBS Lett. 2001 Jun 1;498(1):16-21.

32 Handelman GJ, Han D, Tritschler H, Packer L. Alpha-lipoic acid reduction by mammalian cells to the dithiol form, and release into the culture medium. Biochem Pharmacol. 1994 May 18;47(10):1725-30.

33 Kozlov AV, Gille L, Staniek K, Nohl H. Dihydrolipoic acid maintains ubiquinone in the antioxidant active form by two-electron reduction of ubiquinone and one-electron reduction of ubisemiquinone. Arch Biochem Biophys. 1999 Mar 1;363(1):148-54.

34 Suzuki YJ, Tsuchiya M, Packer L. Antioxidant activities of dihydrolipoic acid and its structural homologues. Free Radic Res Commun. 1993;18(2):115-22.

35 Schonheit K, Gille L, Nohl H. Effect of alpha-lipoic acid and dihydrolipoic acid on ischemia/reperfusion injury of the heart and heart mitochondria. Biochim Biophys Acta. 1995 Jun 9;1271(2-3):335-42.

36 Biewenga GP, Veening-Griffioen DH, Nicastia AJ, Haenen GR, Bast A. Effects of dihydrolipoic acid on peptide methionine sulfoxide reductase. Arzneimittelforschung. 1998 Feb;48(2):144-8.

37 Biewenga GP, Dorstijn MA, Verhagen JV, Haenen GR, Bast A. Reduction of lipoic acid by lipoamide dehydrogenase. Biochem Pharmacol. 1996 Feb 9;51(3):233-8.

38 Loffelhardt S, Bonaventura C, Locher M, Borbe HO, Bisswanger H. Interaction of alpha-lipoic acid enantiomers and homologues with the enzyme components of the mammalian pyruvate dehydrogenase complex. Biochem Pharmacol. 1995 Aug 25;50(5):637-46.

39 Haramaki N, Han D, Handelman GJ, Tritschler HJ, Packer L. Cytosolic and mitochondrial systems for NADH- and NADPH-dependent reduction of alpha-lipoic acid. Free Radic Biol Med. 1997;22(3):535-42.

40 Exner R, Wessner B, Manhart N, Roth E. Therapeutic potential of glutathione. Wien Klin Wochenschr. 2000 Jul 28;112(14):610-6.

41 Hagen TM, Vinarsky V, Wehr CM, Ames BN. (R)-alpha-lipoic acid reverses the age-associated increase in susceptibility of hepatocytes to tert-butylhydroperoxide both in vitro and in vivo. Antioxid Redox Signal. 2000 Fall;2(3):473-83.

42 Lockhart B, Jones C, Cuisinier C, Villain N, Peyroulan D, Lestage P. Inhibition of L-homocysteic acid and buthionine sulphoximine-mediated neurotoxicity in rat embryonic neuronal cultures with alpha-lipoic acid enantiomers. Brain Res. 2000 Feb 14;855(2):292-7.

43 Aguirre N, Barrionuevo M, Ramirez MJ, Del Rio J, Lasheras B. Alpha-lipoic acid prevents 3,4-methylenedioxy-methamphetamine (MDMA)-induced neurotoxicity. Neuroreport. 1999 Nov 26;10(17):3675-80.

44 Rybak LP, Husain K, Whitworth C, Somani SM. Dose dependent protection by lipoic acid against cisplatin-induced ototoxicity in rats: antioxidant defense system. Toxicol Sci. 1999 Feb;47(2):195-202.

45 Packer L, Tritschler HJ, Wessel K. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med. 1997;22(1-2):359-78.

46 McGahon BM, Martin DS, Horrobin DF, Lynch MA. Age-related changes in LTP and antioxidant defenses are reversed by an alpha-lipoic acid-enriched diet. Neurobiol Aging. 1999 Nov-Dec;20(6):655-64

47 Sayre LM, Perry G, Atwood CS, Smith MA. The role of metals in neurodegenerative diseases. Cell Mol Biol (Noisy-le-grand). 2000 Jun;46(4):731-41.

48 Graham JM, Paley MN, Grunewald RA, Hoggard N, Griffiths PD. Brain iron deposition in Parkinson’s disease imaged using the PRIME magnetic resonance sequence. Brain. 2000 Dec;123 Pt 12:2423-31.

49 Bartzokis G, Cummings J, Perlman S, Hance DB, Mintz J. Increased basal ganglia iron levels in Huntington disease. Arch Neurol. 1999 May;56(5):569-74.

50 Richardson DR, Mouralian C, Ponka P, Becker E. Development of potential iron chelators for the treatment of Friedreich’s ataxia: ligands that mobilize mitochondrial iron. Biochim Biophys Acta. 2001 May 31;1536(2-3):133-40.

51 Berg D, Weishaupt A, Francis MJ, Miura N, Yang XL, Goodyer ID, Naumann M, Koltzenburg M, Reiners K, Becker G. Changes of copper-transporting proteins and ceruloplasmin in the lentiform nuclei in primary adult-onset dystonia. Ann Neurol. 2000 Jun;47(6):827-30.

52 Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem. 2000 Jan;74(1):270-9.

53 Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron. 2001 Jun;30(3):665-76.

54 Ou P, Tritschler HJ, Wolff SP. Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant? Biochem Pharmacol. 1995 Jun 29;50(1):123-6.

55 Muller L, Menzel H. Studies on the efficacy of lipoate and dihydrolipoate in the alteration of cadmium2+ toxicity in isolated hepatocytes. Biochim Biophys Acta. 1990 May 22;1052(3):386-91.

56 Suh J, Rocha A, Shigeno E, Frei B, Hagen TM. (R)-alpha-lipoic acid supplementation of old rats decreases age-dependent accumulation of iron and ascorbate depletion in brain. AGE. 1999 Jul; 22(3):121(Abs 19).

57 Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. PNAS. 1994 Nov 8;91(23):10771-8.

58 Herrero A, Barja G. Effect of aging on mitochondrial and nuclear DNA oxidative damage in the heart and brain throughout the life-span of the rat. J Amer Aging Assoc. 2001 Apr;24(2):45-50.

59 Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol. 1993 Oct;34(4):609-16.

60 Barja G, Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J. 2000 Feb;14(2):312-8.

61 Sambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto-Kihara A, Ueda I, Yanagida T, Wada Y, Futai M. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science. 1999 Nov 26;286(5445):1722-4.

62 Stock D, Leslie AG, Walker JE. Molecular architecture of the rotary motor in ATP synthase. Science. 1999 Nov 26;286(5445):1700-5.

63 Hagen TM, Yowe DL, Bartholomew JC, Wehr CM, Do KL, Park JY, Ames BN. Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. PNAS. 1997 Apr 1;94(7):3064-9.

64 Lass A, Sohal BH, Weindruch R, Forster MJ, Sohal RS. Caloric restriction prevents age-associated accrual of oxidative damage to mouse skeletal muscle mitochondria. Free Radic Biol Med. 1998 Dec;25(9):1089-97.

65 Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev. 1994 May;74(1-2):121-33.

66 Hagen TM, Ingersoll RT, Lykkesfeldt J, Liu J, Wehr CM, Vinarsky V, Bartholomew JC, Ames AB. (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J. 1999 Feb;13(2):411-8.

67 Hong YS, Jacobia SJ, Packer L, Patel MS. The inhibitory effects of lipoic compounds on mammalian pyruvate dehydrogenase complex and its catalytic components. Free Radic Biol Med. 1999 Mar;26(5-6):685-94.

68 Zimmer G. Overview of the role of lipoate in the enzyme complexes of energy metabolism and reducing equivalents. In Fuchs J, Packer L, Zimmer G (eds), Lipoic Acid in Health and Disease. 1997; New York: Marcel Dekker Inc, 67-86.

69 Zimmer G, Beikler TK, Schneider M, Ibel J, Tritschler H, Ulrich H. Dose/response curves of lipoic acid R(+)-and S(-)-forms in the working rat heart during reoxygenation: superiority of the R(+)-enantiomer in enhancement of aortic flow. J Mol Cell Cardiol. 1995 Sep;27(9):1895-903.

70 Wallace DC. A mitochondrial paradigm for degenerative diseases and ageing. Novartis Found Symp. 2001;235:247-63.

71 de Grey, ADNJ. The Mitochondrial Free Radical Theory of Aging. Georgetown, TX: Landes Bioscience, 1999

72 Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000 Nov 9;408(6809):239-47.

73 Hagen TM, Ingersoll RT, Lykkesfeldt J, Liu J, Wehr CM, Vinarsky V, Bartholomew JC, Ames AB. (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J. 1999 Feb;13(2):411-8.

74 Suh JH, Shigeno ET, Morrow JD, Cox B, Rocha AE, Frei B, Hagen TM. Oxidative stress in the aging rat heart is reversed by dietary supplementation with (R)-(alpha)-lipoic acid. FASEB J. 2001 Mar;15(3):700-6.

75 Lykkesfeldt J, Hagen TM, Vinarsky V, Ames BN. Age-associated decline in ascorbic acid concentration, recycling, and biosynthesis in rat hepatocytes–reversal with (R)-alpha-lipoic acid supplementation. FASEB J. 1998 Sep;12(12):1183-9.

76 Li X, Cobb CE, Hill KE, Burk RF, May JM. Mitochondrial uptake and recycling of ascorbic acid. Arch Biochem Biophys. 2001 Mar 1;387(1):143-53.

77 Hagen TM. Mitochondrial decay in aging: reversal with dietary supplementation. Presentation to the 29th Annual ISOM Conference. April 6-9, 2000;Vancouver, BC.

78 Paradies G, Ruggiero FM, Petrosillo G, Gadaleta MN, Quagliariello E. Effect of aging and acetyl-L-carnitine on the activity of cytochrome oxidase and adenine nucleotide translocase in rat heart mitochondria. FEBS Lett. 1994 Aug 22;350(2-3):213-5.

79 Paradies G, Ruggiero FM, Gadaleta MN, Quagliariello E. The effect of aging and acetyl-L-carnitine on the activity of the phosphate carrier and on the phospholipid composition in rat heart mitochondria. Biochim Biophys Acta. 1992 Jan 31;1103(2):324-6.

80 Paradies G, Petrosillo G, Gadaleta MN, Ruggiero FM. The effect of aging and acetyl-L-carnitine on the pyruvate transport and oxidation in rat heart mitochondria. FEBS Lett. 1999 Jul 9;454(3):207-9.

81 Paradies G, Ruggiero FM, Petrosillo G, Gadaleta MN, Quagliariello E. Carnitine-acylcarnitine translocase activity in cardiac mitochondria from aged rats: the effect of acetyl-L-carnitine. Mech Ageing Dev. 1995 Oct 13;84(2):103-12.

82 Hagen TM, Ingersoll RT, Wehr CM, Lykkesfeldt J, Vinarsky V, Bartholomew JC, Song MH, Ames BN. Acetyl-L-carnitine fed to old rats partially restores mitochondrial function and ambulatory activity. PNAS. 1998 Aug 4;95(16):9562-6.

83 Loster H, Miehe K, Punzel M, Stiller O, Pankau H, Schauer J. Prolonged oral L-carnitine substitution increases bicycle ergometer performance in patients with severe, ischemically induced cardiac insufficiency. Cardiovasc Drugs Ther. 1999 Nov;13(6):537-46.

84 Ferrari R. Study on propionyl-L-carnitine in chronic heart failure. Eur Heart J. 1999 Jan;20(1):70-6.

85 Loster H, Miehe K, Punzel M, Stiller O, Pankau H, Schauer J. Prolonged oral L-carnitine substitution increases bicycle ergometer performance in patients with severe, ischemically induced cardiac insufficiency. Cardiovasc Drugs Ther. 1999 Nov;13(6):537-46.

86 Ames BN. Damage to mitochondria. Strategies for Engineered Negligible Senescence. 2000 Oct 1;Children’s Hospital of Oakland Research Institute, Oakland, CA. Transcript available at http://research.mednet.ucla.edu/pmts/sens/transframe.htm

87 Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298-300.

88 Harman D. J Gerontol. Prolongation of the normal life span by radiation protection chemicals. 1957;12:257-63.

89 Harman D. Free radical theory of aging: effect of free radical reaction inhibitors on the mortality rate of male LAF mice. J Gerontol. 1968 Oct;23(4):476-82.

90 Harman D. Prolongation of the normal lifespan and inhibition of spontaneous cancer by anti-oxidants. J Gerontol. 1961;16:247-54.

91 Bezlepkin VG, Sirota NP, Gaziev AI. The prolongation of survival in mice by dietary antioxidants depends on their age by the start of feeding this diet. Mech Ageing Dev. 1996 Dec 20;92(2-3):227-34.

92 Meydani M, Lipman RD, Han SN, Wu D, Beharka A, Martin KR, Bronson R, Cao G, Smith D, Meydani SN. The effect of long-term dietary supplementation with antioxidants. Ann N Y Acad Sci. 1998 Nov 20;854:352-60.

93 Lonnrot K, Holm P, Lagerstedt A, Huhtala H, Alho H. The effects of lifelong ubiquinone Q10 supplementation on the Q9 and Q10 tissue concentrations and life span of male rats and mice. Biochem Mol Biol Int. 1998 Apr;44(4):727-37.

94 Coles LS, Harris SB. “Coenzyme Q-10 and lifespan extension.” In Klatz RM, Kovarik FA, Goldman R, eds. Advances in Anti-Aging Medicine. Vol 1. 1996; Larchmount, NY: 205-15.

95 Tappel A, Fletcher B, Deamer D. Effect of antioxidants and nutrients on lipid peroxidation fluorescent products and aging parameters in the mouse. J Gerontol. 1973 Oct;28(4):415-24.

96 de Grey AD. The non-correlation between maximum lifespan and antioxidant enzyme levels among homeotherms: implications for retarding human aging. J Anti-Aging Med. 2000 Winter;3(1):25-36.

97 Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972 Apr;20(4):145-7.

98 Lass A, Forster MJ, Sohal RS. Effects of coenzyme Q10 and alpha-tocopherol administration on their tissue levels in the mouse: elevation of mitochondrial alpha-tocopherol by coenzyme Q10. Free Radic Biol Med. 1999 Jun;26(11-12):1375-82.

99 Zhang Y, Turunen M, Appelkvist EL. Restricted uptake of dietary coenzyme Q is in contrast to the unrestricted uptake of alpha-tocopherol into rat organs and cells. J Nutr. 1996 Sep;126(9):2089-97.

100 Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996 Jul 5;273(5271):59-63.

101 Brunk U, Terman A. The Mitochondrial-Lysosomal Axis Theory of Cellular Aging In Cadenas E, Packer L (eds). Understanding the Process of Aging. 1999; New York: Marcel Dekker Inc, 229-50.

102 Perez-Campo R, Lopez-Torres M, Cadenas S, Rojas C, Barja G. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol [B]. 1998 Apr;168(3):149-58.

103 Pamplona R, Portero-Otin M, Riba D, Ruiz C, Prat J, Bellmunt MJ, Barja G. Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. J Lipid Res. 1998 Oct;39(10):1989-94.

104 Vojta CL, Fraga PD, Forciea MA, Lavizzo-Mourey R. Antiaging therapy: an overview. Hosp Pract (Off Ed). 2001 Jun 15;36(6):43-9.

105 Weindruch RH, Walford RL. The Retardation of Aging and Disease by Dietary Restriction. 1988; Charles C Thomas, Springfield, IL.

106 Masoro EJ. Caloric restriction and aging: an update. Exp Gerontol. 2000 May;35(3):299-305.

107 Roth GS, Ingram DK, Black A, Lane MA. Effects of reduced energy intake on the biology of aging: the primate model. Eur J Clin Nutr. 2000 Jun;54 Suppl 3:S15-20.

108 Walford RL, Mock D, MacCallum T, Laseter JL. Physiologic changes in humans subjected to severe, selective calorie restriction for two years in biosphere 2: health, aging, and toxicological perspectives. Toxicol Sci. 1999 Dec;52(2 Suppl):61-5.

109 Vallejo EA. La dieta del hambre a dias alternos in la alimentacion de los viejos. Rev Clin Exp. 1957; 63(1):25-31.

110 Willcox BJ, Willcox DC, Jenkins DJ, Todoriki H, Suzuki M. Successful aging in Japan’s longest-lived people: the role of the traditional Okinawan diet. Gerontology. 2001 Jul;47(Suppl 1):539-40.

111 Walford RL. Beyond the 120 Year Diet. 2000; New York: Four Walls, Eight Windows.

112 Gredilla R, Sanz A, Lopez-Torres M, Barja G. Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB J. 2001 Jul;15(9):1589-91.

113 Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A.Does oxidative damage to DNA increase with age? PNAS. 2001 Aug 28;98(18):10469-74.

114 Lee J, Yu BP, Herlihy JT. Modulation of cardiac mitochondrial membrane fluidity by age and calorie intake. Free Radic Biol Med. 1999 Feb;26(3-4):260-5.

115 Lee CM, Aspnes LE, Chung SS, Weindruch R, Aiken JM. Influences of caloric restriction on age-associated skeletal muscle fiber characteristics and mitochondrial changes in rats and mice. Ann N Y Acad Sci. 1998 Nov 20;854:182-91.

116 Desai VG, Weindruch R, Hart RW, Feuers RJ. Influences of age and dietary restriction on gastrocnemius electron transport system activities in mice. Arch Biochem Biophys. 1996 Sep 1;333(1):145-51.

117 Lal SB, Ramsey JJ, Monemdjou S, Weindruch R, Harper ME. Effects of caloric restriction on skeletal muscle mitochondrial proton leak in aging rats. J Gerontol A Biol Sci Med Sci. 2001 Mar;56(3):B116-22.

118 Merry BJ. Calorie restriction and age-related oxidative stress. Ann N Y Acad Sci. 2000 Jun;908:180-98.

119 Freisleben HJ, Neeb A, Lehr F, Ackermann H. Influence of selegiline or lipoic acid on the life expectancy of immunosuppressed mice. Arzneimittelforschung. 1997 Jun;47(6):776-80.

120 Lamberty Y, Gower AJ. Age-related changes in spontaneous behavior and learning in NMRI mice from maturity to middle age. Physiol Behav. 1990 Jun;47(6):1137-44.

121 Fortmeyer HP. Thymusaplastische maus-(nu/nu) thymusaplastische ratte (rnu/rnu): haltung, zucht, versuchsmodelle. Schriftenreihe Versuchstierkunde 8, Verlag P. Parey, Berlin, Hamburg. Cited in (119).

122 Walford RL. MHC regulation of aging: an extension of the immunologic theory. In Warner HR, Butler RN, Sprott RL, Schneider EL. Modern Biological Theories of Aging. 1987; New York, NY: Raven Press, 243-360.

123 Wolz P, Krieglstein J. Neuroprotective effects of alpha-lipoic acid and its enantiomers demonstrated in rodent models of focal cerebral ischemia. Neuropharmacology. 1996 Mar;35(3):369-75..

124 Shih JC. Atherosclerosis in Japanese quail and the effect of lipoic acid. Fed Proc. 1983 May 15;42(8):2494-7.

125 Ivanov VN. Effect of lipoic acid on tissue respiration in rabbits with experimental atherosclerosis. Cor Vasa. 1974;16(2):141-50.

126 Angelucci L, Mascitelli-Coriandoli E. Anticholesterol acivity of alpha-lipoic acid. Nature. 1958 Mar 28; 181(4613):911-2

127 Kritchevsky D, Moyer AW. Anticholesterol acivity of alpha-lipoic acid. Nature.1958 Mar 29; 182(4632): 396…

Spargi la voce